Oprogramowanie do symulacji inżynierskich OptiFDTD


OPTIWAVE

SPECTROPOL jest ekskluzywnym dystrybutorem kanadyjskiej firmy Optiwave, firmy z 30 letnim doświadczeniem w tworzeniu przełomowych narzędzi programowych dostosowanych do projektowania, symulacji i optymalizacji w stale rozwijających się obszarach nanotechnologii fotonicznej, optoelektroniki i sieci optycznych.

Oprogramowanie Optiwave to ponad 100 instytucji naukowych, badawczych i przemysłowych w 80 krajach na całym świecie.

OptiFDTD: Projektowanie i analiza komponentów fotonicznych za pomocą metody FDTD

 

W jakich obszarach ma zastosowanie OptiFDTD?

OptiFDTD umożliwia projektowanie, analizę i testowanie nowoczesnych pasywnych oraz nieliniowych komponentów dla propagacji fal, rozpraszania, odbicia, dyfrakcji, polaryzacji i zjawisk fotoniki nieliniowej. Jego rdzeń oparty jest na algorytmie FDTD (finite-difference time-domain) z drugorzędną dokładnością numeryczną oraz zaawansowanymi warunkami brzegowymi – warstwie UPML (uniaxial perfectly matched layer).

Algorytm rozwiązuje zarówno pola elektryczne, jak i magnetyczne w dziedzinach czasowych i przestrzennych, wykorzystując pełnowektorową różniczkową postać sprzężonych równań Maxwella. Umożliwia to modelowanie dowolnych geometrii, bez ograniczeń w zakresie właściwości materiałowych urządzeń. Oprogramowanie OptiFDTD znacząco zwiększa produktywność inżynierów, skracając czas wprowadzenia produktów na rynek.

Popularne aplikacje

 

Cechy charakterystyczne OptiFDTD

Zintegrowane środowisko

OptiFDTD oferuje kompletny i przyjazny interfejs graficzny 3D, umożliwiający projektowanie, symulację i analizę złożonych urządzeń. Projekty z zewnętrznego oprogramowania CAD można łatwo importować i eksportować, korzystając z popularnych formatów, takich jak DXF i GDSII.

OptiFDTD i OptiBPM mogą bezproblemowo współpracować, rozszerzając zakres symulacji możliwy do osiągnięcia przy użyciu samego OptiFDTD. Integracja tego narzędzia FDTD z innymi rozwiązaniami Optiwave dodatkowo przyspiesza czas wprowadzenia produktów na rynek dla inżynierów. 

Zaawansowana automatyzacja i przeglądy parametrów

Projekty w OptiFDTD oraz symulacje fotoniki nieliniowej mogą być w pełni zautomatyzowane dzięki wykorzystaniu potężnego języka skryptowego Visual Basic. Język ten jest łatwy do nauczenia i oferuje standardowe struktury programistyczne, takie jak obiekty, pętle oraz instrukcje warunkowe. Przeglądy parametrów (parameter sweeps) zapewniają intuicyjny interfejs graficzny do definiowania symulacji parametrycznych, w których jeden lub dwa parametry zmieniają się przy każdej iteracji. Narzędzia post-processingu OptiFDTD wykorzystują funkcje automatyzacji, wspierając optymalizację projektu.

 

Rozwiązanie równań metodą rozwinięcia fali płaskiej dla kryształów fotonicznych

Zintegrowany 2D PWE band solver oraz edytor kryształów fotonicznych w naszym programie FDTD umożliwiają projektowanie i symulację dowolnych struktur kryształów fotonicznych (1D, 2D, 3D). Band solver PWE skanuje przestrzeń k, podążając za nieredukowalną strefą Brillouina, aby znaleźć częstotliwości własne danej struktury. Przerwy pasmowe (band gaps) są automatycznie wyznaczane na wygenerowanym diagramie pasmowym.

Zaawansowane narzędzia symulacji post-procesowej

Program OptiFDTD oferuje również rozbudowane narzędzia do analizy symulacji. Za pomocą OptiFDTD Analyzer można obserwować ewolucję amplitudy, fazy oraz rzeczywistych lub urojonych wartości dowolnych składowych pola w domenie czasowej i częstotliwościowej (przy użyciu transformacji FFT lub DFT) zarejestrowanych przez detektory. Wszystkie dane mogą być eksportowane do zewnętrznych narzędzi, takich jak Matlab™ czy Origin™ w celu dalszej obróbki lub publikacji.

Ewolucję pól w czasie można również wizualizować w postaci filmów. OptiFDTD Analyzer i OptiFDTD Toolbox pozwalają na obliczenia rozkładu mocy spolaryzowanej, wektorów Poyntinga, całek nakładania, absorpcji ciepła oraz transformacji dalekiego pola.

Wydajność

OptiFDTD w pełni wykorzystuje możliwości nowoczesnych 64-bitowych systemów operacyjnych i procesorów. Program OptiFDTD został zoptymalizowany do efektywnego działania na wielu rdzeniach i procesorach w jednym komputerze, korzystając z pamięci współdzielonej, co zapewnia maksymalną wydajność przy minimalnym zużyciu pamięci (w porównaniu do architektur rozproszonej pamięci, takich jak MPI).

W przypadku symulacji wymagających dużej ilości pamięci, dostępny jest silnik symulacji 3D na system Linux, zaprojektowany specjalnie z myślą o wykorzystaniu klastrów komputerowych do symulacji fotoniki nieliniowej.

Interfejs z popularnymi narzędziami projektowymi

 

Charakterystyka OptiFDTD

 

  • Waveguide mode input using OptiMode
  • Gaussian beam input
  • Plane-wave
  • Point source (dipole)
  • Single wavelength (CW) source
  • Pulsed source
  • Linear or circular polarizations
  • Simulation of multiple sources simultaneously
  • Dielectric (lossless and lossy) material, (n,k) direct entry, or Sellmeier model for glasses
    Isotropic or anisotropic media
  • Dispersive (Lorentz, Drude and Lorentz-Drude)
  • Nonlinear photonics media (2nd, 3rd order, Kerr and Raman)
  • Perfect conductor material
  • Extensive Material Library
  • Uniaxial Perfectly Matched Layers (UPML)
  • Perfect Electric Conductor (PEC)
  • Perfect Magnetic Conductor (PMC)
  • Periodic Boundary Conditions (PBC)
  • Straight and titled waveguides with taper function
  • Ring, arc, circle, and ellipse waveguides with taper
  • Parabolic and exponential waveguides with taper
  • 3D shapes with clipping functions
  • Photonic crystal lattice editor
  • Import from 3rd party CAD layout software
  • Export masks for lithography
  • 2D TM or TE, 3D simulations
  • FDTD program supports non-uniform meshing capabilities
  • PWE band solver for photonic crystals
  • Full 64-bit simulation, Multithreaded engine
  • Cluster computing: hybrid multithreading / MPI engine on Linux clusters
  • Point detector (temporal and spectral)
  • Line and area detectors (DFT spectra)
  • Mode analysis
  • Poynting vector analysis
  • Polarized power analysis
  • Far-field transform
  • Fields exported to text, images, or movies

 

Video – Poznaj OptiFDTD

0:23 Silver Slab Wavelength

0:53 Simulation

1:58 Sub-Wavelength Aperture

 

Aplikacje OptiFDTD

Poniżej znajduje się lista wybranych publikacji naukowych, czasopism technicznych, periodyków oraz materiałów konferencyjnych, które odnoszą się do wykorzystania oprogramowania OptiFDTD. Te odniesienia zostały zebrane z wewnętrznych źródeł, artykułów nadesłanych przez klientów oraz publikacji naukowych z Google Scholar. Według naszej najlepszej wiedzy, wszystkie te prace korzystają z pakietu oprogramowania OptiFDTD. W przypadku zauważenia jakichkolwiek błędu, prosimy o natychmiastowy kontakt na adres info@spectropol.pl lub info@optiwave.com.

 

  1. Metasurface integrated in thin solar cells for index modulation https://www.spiedigitallibrary.org/proceedings/Download?urlId=10.1117%2F12.2643267
  2. A low loss hexagonal six-port optical circulator using silicon photonic crystal https://doi.org/10.1007/s11082-023-05335-1
  3. Design and Optimization of 2D Photonic Crystal Based Compact All Optical T Splitter for Photonic Integrated Circuits https://www.jpier.org/PIERM/pier.php?paper=23080801
  4. Design of 2D photonic crystal biosensor for HIV detection using Nano cavity and micro cavity based structure”, researchgate.net, https://www.researchgate.net/profile/Vijay-Kalyani/publication/372493850_Design_of_2D_photonic_crystal_biosensor_for_HIV_detection_using_Nano_cavity_and_micro_cavity_based_structure/links/64ba45f58de7ed28bab421af/Design-of-2D-photonic-crystal-biosensor-for-HIV-detection-using-Nano-cavity-and-micro-cavity-based-structure.pdf
  5. Temperature-Dependent Anisotropic Refractive Index in β-Ga2O3: Application in Interferometric Thermometers https://www.mdpi.com/2079-4991/13/6/1126
  6. High Sensitivity Refractive Index Sensor Based on Two-Dimensional Photonic Crystal for Chikungunya Virus https://essuir.sumdu.edu.ua/handle/123456789/93356
  7. Effect of electronic and phonon properties on polar dielectric embedded polymer-based radiative cooling materials https://www.sciencedirect.com/science/article/pii/S0927024823002945
  8. Modelling and performance analysis of ring resonator-based refractive-index sensor for bacterial water detection https://doi.org/10.1007/s11082-022-04507-9
  9. Simulation and excitation analysis of nano aperture-array for surface plasmon based memory applications https://doi.org/10.1007/s41870-022-01100-x
  10. Effective index approximation based analytical modeling and two dimensional numerical investigation of surface and bulk sensitivity in optimized hybrid … https://doi.org/10.1007/s11082-023-04592-4
  11. Fano Resonance enhanced Refractive Index sensing using Arc based Plasmonics Resonator  https://ieeexplore.ieee.org/abstract/document/10308591/
  12. Effective Refractive Index for Nano-sized Metal Array Medium https://doi.org/10.3938/NPSM.73.196
  13. High performance infrared selective emissivity film tailored for thermal-stable camouflage https://www.sciencedirect.com/science/article/pii/S0030401823004911
  14. Micro/nano-structuring assisted efficiency improvement of organic light emitting diodes https://doi.org/10.1063/5.0114417
  15. The comparative analysis of 2D photonic crystals applications based on specific modeling/simulation results https://doi.org/10.1117/12.2665488.short
  16. Refractive Index Fiber Laser Sensor by Using a Fiber Ball Lens Interferometer with Adjustable Free Spectral Range  https://www.mdpi.com/1424-8220/23/6/3045
  17. Photonic integrated cmos-compatible true time delay based broadband beamformer https://doi.org/10.1007/s11082-023-05492-3
  18. Two-dimensional photonic crystal based optical CNOT gate https://doi.org/10.1007/s11082-023-05228-3
  19. A 2D GaAs-Based Photonic Crystal Biosensor for Malaria Detection https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=22235329&AN=172767238&h=lZt0j6uqvf0CpHJJnO7n%2B%2B7A7E%2FljwlK%2B1%2B%2Bx1I5lq8Iz84699PjmxJCvdOm9joWq0ODIuY1E%2FytkxoPS5o2VQ%3D%3D&crl=c
  20. Plasmonic field-regulating characteristics of alloy-based multilaminar films in 300–800 nm https://www.cell.com/heliyon/pdf/S2405-8440(23)00291-8.pdf
  21. A Gallium arsenide composite semi-conductive material-based 2D photonic crystal biosensor for cancer cell detection https://doi.org/10.1007/s11082-023-05281-y
  22. Enhancing photon collection from single shallow nitrogen-vacancy centers in diamond nanopillars for quantum heterodyne measurements https://doi.org/10.35848/1882-0786/acede9
  23. Dimensional Photonic Crystal Biosensor Based on Gallium Arsenide Composite Semi-conductive Material for Diabetes Detection https://doi.org/10.1007/s11468-023-01857-2
  24. Analysis the Linear Optical Constant of Lanthanum Doped Nickel Ferrites Nanoparticles from Absorption Spectra https://www.ijarst.in/public/uploads/paper/359531684825519.pdf
  25. Design and Analysis of All-Optical Logic Gates Based on a Germanium Dielectric Material Micro Ring Resonator Using Photonics Crystal Technology https://www.iarj.in/index.php/ijrase/article/view/170
  26. Design and Analysis of 2D Photonic Biosensor with ML for Respiratory Virus Detection https://nopr.niscpr.res.in/handle/123456789/62914
  27. Design and Analysis of 2D Photonic Biosensor with ML for Respiratory Virus Detection: BIOSENSOR WITH ML FOR RESPIRATORY VIRUS DETECTION https://or.niscpr.res.in/index.php/IJEMS/article/view/2520
  28. A review of different techniques used to design photonic crystal-based logic gates https://www.sciencedirect.com/science/article/pii/S0030402623002905
  29. Enhancing Room-temperature Photoluminescence from Erbium-doped Silicon by Fabricating Nanopillars in a Silicon-on-Insulator Layer https://www.jstage.jst.go.jp/article/ejssnt/advpub/0/advpub_2023-041/_article/-char/ja/
  30. Four-Arm Grating Couplers for Wavefront Sensing Applications https://macsphere.mcmaster.ca/handle/11375/29050
  31. Two-Dimensional Photonic Crystal Based Four-channel Demultiplexer in Graphene for Applications DWDM”  https://www.researchsquare.com/article/rs-3361647/latest
  32. Design of linear block code encoder and decoder using electro-optical and all-optical units https://doi.org/10.1515/joc-2019-0085
  33. Light scattering properties of cellulose microcrystals from multiple angles under a magnetic field https://content.iospress.com/articles/international-journal-of-applied-electromagnetics-and-mechanics/jae220172
  34. Implementing commercial inverse design tools for compact, phase-encoded, plasmonic digital logic devices https://doi.org/10.1117/1.JNP.17.016011.short
  35. Optimization of Electrode, Interlayer and Absorber Layers of a Gr/ReS2/PSi/p-cSi Photovoltaic Solar Cell with SCAPS https://doi.org/10.1007/s11664-023-10415-9
  36. Photonic Crystal Flip-Flops: Recent Developments in All Optical Memory Components https://www.mdpi.com/1996-1944/16/19/6467
  37. New designs of 4× 2 photonic crystal encoders using ring resonators https://doi.org/10.1007/s11082-022-04506-w
  38. Enhancing the Photocatalytic Performance of Antibiotics Using a Z-Scheme Heterojunction of 0D ZnIn2S4 Quantum Dots and 3D Hierarchical Inverse Opal  https://www.mdpi.com/1420-3049/28/20/7174
  39. Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO2 Heterojunction  https://www.mdpi.com/1420-3049/28/14/5437
  40. A Y-shaped photonic integrated device with XNOR/NAND/NOR for optical signal processing https://doi.org/10.1007/s11082-023-05068-1
  41. Photonic crystal-based tristate phase shift quantum gates using joint encoding of frequency and phase https://doi.org/10.1007/s12596-023-01439-9
  42. Enhanced Light Extraction of Nano‐Light‐Emitting Diodes with Metal‐Clad Structure Using Vertical GaAs/GaAsP Core–Multishell Nanowires on Si Platform https://doi.org/10.1002/adpr.202200337
  43. Toward the Scaling up of Daytime Radiative Coolers: A Review https://doi.org/10.1002/adom.202300123
  44. Toward the Scaling up of Daytime Radiative Coolers: A https://d-nb.info/130307396X/34
  45. On the potential of cool materials in the urban heat island context: Scalability challenges and technological setbacks towards building decarbonization https://www.sciencedirect.com/science/article/pii/S0378778823005601

Bezpłatny okres próbny

Zapisz się na 30-dniowy bezpłatny test  rozwiązań Lambda Research Corporation

Scroll to Top